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ERROR PROBABILITIES FOR MAXIMUM LIKE LIHOOD DETECTION
OF M-ary POISSON PROCESSES IN POISSON NOISE

By Sherman Karp and Martin G. Hurwitz
Electronics Research Center

and

Robert M. Gagliardi
University of Southern California

SUMMARY

In this problem we have considered some of the recent
results in the detection of a Poisson-distributed signal in Poisson
noise. Curves for error probabilities are presented for the case
of detecting one of M equiprobable signals over a broad range of
parameter values- Implicit in these results for system applications
is the use of "photon counting' receivers. Attention is given to the
optical communication and radar problems for this receiver structure
and significant parameters are translated into those used in the
report. A complete description of the computational procedures
used for making the error probability calculations is given.

INTRODUCTION

The purpose of this paper is to summarize some of the
recent results (refs. 1-5) concerning the maximum likelihood
detection of Poisson-distributed signals in the presence of
Poisson-distributed noise and to tabulate the resultant error
probabilities over a broad range of signal and noise when optimum
signal design for maximum distance is used. Furthermore, the
report shows how these results can be applied to the direct detection
of optical signals, with the optimun. detector being a counter of
photoelectrons. This form of detector can be implemented in the
visible portion of the spectrum where photomultipliers exist.

The tabulation is presented in two forms. The first form
is related to the detection of M-~-ary signals and is applicable to the
communications problem. The second form is related to the range
bin problem in pulsed radar systems. It is felt that the values of the
parameters will be applicable to most problems of this type.



BACKGROUND

When a classically describable field is incident upon a
photodetecting surface, the probability dp of releasing a photoelectron
in an interval dt over a surface area do is (ref 6):

dp = el (t,0) dt do

where I (t,c) is the intensity of the field and o is equal to T]/hf in
whichn is the quantum efficiency, his Planck's constant, and f is
the frequency. For a surface of area A:

o dt [ doI(t,o)=oP (t)dt
A

where P (t) is the total collected power at time t. Suppose that the
power is related to the incident particle rate n (t) by

P (t) = n (t) hf.

The probability of releasing a photoelectron in a time dt is then

o P (t) dt = nn (t) dt.

With this assumption, the probability of releasing K photoelectrons
p(K) in a finite interval AT is (ref. 7):

(552 pne) ae )™ t+ At
pK) = T exp | - ft nn(t) dt]

A system of events obeying this density distribution is called
a Poisson process (ref. 8). If the system of events is stationary,
we can replace the time average by an ensemble average, as

— K
p(K) = EKA,—T) exp [ -nn AT].

The system of events would then be called a stationary Poisson
process (ref. 8).

Strictly speaking, p (K) is a conditional density and should be
written as p[K/ﬁ(t)] since, in general, n(t) itself is a sample from



a random process. However, in communications, one is interested
in '"designing' the waveform n(t) to satisfy certain desirable
features. Consequently, n(t) is assumed to be deterministic.

Let us assume that we are monitoring the current output of
a unity quantum efficiency photodetector in an interval (0, T) and
can distinguish all events. Let us further assume that one of two
different rates was sent, resulting in one of two received n. (t),
nz(t), plus a stationary additive constant rate n corresponéing to
nGise. We wish to formulate the maximum likelihood detection
procedure for determining which rate is imbedded in the received
signal. If the possible transmitted rates are both band-limited to
B, then so are nl(t) and n,(t). We can therefore partition the (0, T)
interval into M subintervals ti+1' t; = AT (ref. 1)
where

O=to<t1<. « e <tM_1<tM=T,

with AT <_—Z=1B— » and consider the quantized version of the possible

rates. That is:
1 ti+1
;= AT ft n, (t) dt; (t; <t s<t; . )
i

To accomplish the detection we consider two hypotheses:
Hy-- rate ny(t) and noise n are present; H,--rate nj(t) and noise
n, are present. We now consider a vector space of M dimensions
where each dimension represents the number of events K; observed
in the corresponding interval. Since the number of events is
independent from interval to interval, the vector K = (Kpeveonnnn ,

Kpg) has a conditional probability given Hj of

_ K
[ (nli + nn) AT
i=1 K.!
1

i -(nli + nn) AT

e

HE

p(K |H1) =

-
[}



and & -onditional probability, given Hj, of

M — K;
p(KIH,) = I [ (ng; + B )aT] *

- (np; + By) AT
i=1 K. 1
1

The likelihood ratio A is then defined as

K.
i

KIH M |
A(}():L}L = II MJ o~(myy - mp) AT

p(KIH,) i=1 [(n,, + n )

and the maximum likelihood detection criterion requires, after ob-
serving K, a comparison of A(K) to a threshold ¢ . If A >c¢, we
decide rate nj(t) is imbedded within the received process, and if
A <c, we decide rate n2(t). Since the log function is monotonic,
we can also make a decision based upon

log A S log ¢
where < denotes the threshold comparison.

Thus log A is

M n. + 'ﬂn M

z K. log|l—————}- % (n,. - n,.)AT >log c,
. i — . 1i 21 <

i=1 nZi + n_ i=]

which can be rewritten as

M
A'g[logc-}-iZjl (nli—nZi) AT ] (1)

where



M
A= %

(]

=1

nli M
Ki log 1+—)- =
n i=1

n

n

Kilog(1+:ﬁ).

n
1

(2)

Thus the maximum likelihood detectiontest irvclves, equivalently, a
comparison of the quantity A' in Eq.(2) to the new threshold in
Eq. (1) .

Let us first consider the case where No; = 0 for all i and
we are detecting the rate n

to no signal).

M
A=
1

=

""Distance' Considerations

n,.

K, 1og(l+—_—1i)z log c + =

n
n

;(t) + np versus Hn alone (i.e., signal
Then the test in Eq. (1) becomes

M

1=

Clearly, since Ki is Poisson-distributed:

EK[A'/H

and

E. [A/H,| =

1] = Xz (n1i + Hn) log

1

nliAI'

We define the ''distance!'' D between the two hypotheses as

D

:E_I_<

M
=

i=1

[A'/Hl] - Eg [A'/HZ]

it
n, log (1 + =

Dn

) AT .

We would like to investigate maximum and minimum of the distance

D

M
==
i=1

M3
n,. log [ 1+ —

n

] AT



subject to the energy constraint

M K
= nl. =K'= S
=1t AT

Using a Lagrange multiplier we seek the minimum of

M n. M
I=AT Z ny log[1+—]+X*Z mn;
i=1 n i=1
n
which requires

n.,. AT n,.
2L AT log[1+—1]+ 1 oyn=o0

on,. n n,. t n

n li n

1i
and is a set of M equations that must be satisfied for all i
=n for all i yielding

solution is ny.

M nl.
D . = % n,logll+——]AT

min . 1i -
i=1 n
n

n 'Ks

:ATMnlog[l+:—]=Kslog[l+—_J

n Tnn

which can be identified as a minimum.

The maximum value can be obtained by noting that

M n,. M /2 | M n,.
> nlog[l4 =)< [ (%] |2 log® @+
. 1i — -t~ 11 o -
i=1 n i=1 i=1 n
n
M M nl.
< [ Z n ] >z log [1 + — l
— 1. ISR N - |
i=1 i=1 n_

The

1/2
)



L

.= K'a ..

with the equality occurring for ng. i

The maximum value for the sum becomes:

M np. K
D oax= Z nlilog[1+_ ]AT=Kslog[1+_
i=1 n nnAT

Thus, the distance D is maximized when the rate n.(t) is concen-
trated in one AT interval. Hence, the signal maximizing detect-
ability* (refs. 1,2) also maximizes distance. Notice also, that for
the important case when B, >> 0. for all i,

M 2

Z n,. AT
o

D ==

=]

n
with distance and detectability identical.

The maximization can also be obtained for the case nZi;[O .

M nli + nn
_ P 1 _ 1 = - ke Bl
D=EJ[A/H]-E)[A/H)] =2 (0, -n,.) log ( —) AT
i=1 n,. +n
21 n
M 4T (ny; - ny4)
= > 1i " n AT .
._. log|———
i=1 + A
n2i n

Since n,. and n,. must be non-negative, the log term is
.. . i . . .
maximized for all i by having ny; = 0 when ny; is not, and vice
versa. This maximizes

(ny; - ny;)

by giving the largest magnitude to both the bracketed term and the
exponent simultaneously and leaves the sign of the log positive.

* Signal-to-noise ratio



Therefore, the two signals should be disjoint in time. On the
assumption that they are disjoint, then:

M ny M o4
D=2z nlilogl'1+_ ]+Z‘ nZilog[l+_ ]-
i=]1 n i=1 nn

To maximize D, we have only to notice that this is identical to
maximizing each signal independently or to concentrate each signal
in a different time interval. The optimum processor, therefore,

calculates

M ng. M n,.
A= 2 K logll+—=]-3 K. log[l+—=]
i=1 ! n_ i=] * n

which is compared to the threshold

M

logc+>Z (n,. -n

: i " Bpy) AT -
i=1

If the two signals are equiprobable with equal energy

M M

> n,. AT = 2 n,. AT ,
. 1i . 21

i=1 i=1

c=1land the threshold is zero. The H,, H, log likelihood functions
are calculated for each choice of waveform n; (t) and the hypothesis
is selected according to the largest result.

If M waveforms are used, the optimum processor would
calculate the likelihood function for each of the M choices and
select the maximum. Expressed mathematically, one obtains for
optimum signal design under an equiprobable, equal energy assump-

tion

K K

A=K, logll+ =
1 n AT J n AT
n



> .
or Ki P KJ

Hence, the problem is reduced to counting the number of photo-
electrons in each AT interval and selecting the interval with the
largest count. The probability of correct detection P, is then:

Py = [ Probability that K. > K, for all i/n. is the transmitted
waveform]. J J
Mo
+ > — [ Probability that Kj = K, forr-1 intervals/nj is the
r=2 F

transmitted waveform].

This is then averaged over all choices of waveform, which for
the equiprobable set is just PD .

This can be written

_ % . i M-1
o . o§ (KS + nn AT) e_(KS +EnAT) x-1 (nr1 AT) e(HnAT)
D w1 (x) ! i=o il
M _
1+B) -1 n 1 o (Ks+nnM AT) (3)
MB M
where
x
(n AT)
B =

The error probability PE =1- PD .



Presentation of the Data

The data are presented in two forms. In the first form
(Program 1, Figures 1-10) Py is plotted versus M for various
values of Kg and Kn = np AT. These parameters are directly
related to the received signal and noise energies, respectively.
Thus, if one determines from the range equation that Pg is the
received signal peak power, then

nP_ AT
K, = ———
hf

whereas if the received average noise power is P,
nf, AT
Ky —/—— = (4)
hf

If non-diffraction-limited collecting optics is used, P_ is
calculated as n

PN = ARTO Qr Ny AN (5)
with
Ny = spectral radiance (power/unit area, solid-angle band-
width)
To = fraction of optical transmission through all elements
AR = area of collector

Qr = resolution of receiving collector (solid angle)

AX= optical bandwidth.

o
In the visible region of the spectrum 5-6000 A, K, for non-diffraction-
limited optics with a blue sky background can be written as

2
K, = 8NAT(aD)” T _ (AN)

10



T HURW1,C76501575005CM50000« NASA 101074 KARP3  HURWITZ
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_PROGRAM |

04/30/68 . 80/80 LIST

REQUEST TAPE7,L0e PLOT SAO 568 RING IN.
RFL+50000. ’
RUN(S,999’977777)

LGOe. - : : o ’ T

"PROGRAM KARP3 (INPUTsOUTPUTsTAPET7sTAPES=INPUTs TAPELG=0UTPUTY
DOUBLE PRECISION AsBsEKSNSELIOsELMSEMIEXKsPDSPESPISPXy
1 " 59 SAVEsSUMySUMPI 9T s TERMs TERMZ2 s TERM3 s TILSTsTOTALS X1 »
2, XK,XKN,XKNMAX’XKNMIN9XK59XK5N9XM9XM19XMB;XMBMIN9XX
" DATA INsNOUTsIPLTsTEST/5963s751eD=24/ I
DATA XAXsYAX/Beslle/
DATA TXMAX s XKNMAX s XKNMIN s XMBMIN/100093eD+291LeD—-30s1eD~127" "~
CcCcC KARP/HURWITZ
cCcC A=ABS.VALUE OF DIFFERENCE BETWEEN TWO CONSECUTIVE TERMS
cCcC B DESCRIBED IN WRITE UP
CCC 7" EKSN=EXP(~XKSN} ’ - - T ST T
cCcC EL10=CONSTANT USED FOR TESTING MAGNITUDES OF NUMBERICAL VALUES
ccce ELM=LOG (M) T
cccC EM=INITIAL VALUE OF M
CCcC EX=ARRAY FOR LOG(M) FOR EACH KS AND EACH K -
cCcC EXK=INPUT OF K

TCCT I=INDEX ™ o ’ ’ o ST

ccCc ICUTOF USED TO INSURE NO PREMATURE CUT-OFF OF THE CALCULATION
ccc IEND=TEST VALUE FOR STOPPING RUN ~ ’ -
ccc IEND MUST BE NINE FOR ALL BUT LAST DATA CARD
ccc IXMAX=MAX VALUE FOR INDEX IX

gg%_ jl COUNTS NUMBER _TOTAL NUMBERS OF PE'S L e

CcccC JMP MUST BE ZERO FOR FIRST DATA CARD

TCCC T UMP=TEST VALUE FOR READING VALUES OF K

CCC NM=NUMBER OF VALUES OF M
CCC NK=NUMBER OF VALUES OF K’
CCC NN=NPT(I)

ccc NPT (J) COUNTS NUMBER OF Mt'S FOR EACH K
CCC  N1l=NN+1
CCC =~ 'N2=NN+2
CCC_._PD DESCRIBED IN WRITE_uP

ccc TPE=1-PD
CCC PI=(KN**I)*EKSN/(I FACTORIAL)
CCC PX=XKSN*EKSN

CCC S USED TO TEST MAGNITUDES
ccCcC SAVE LAST VALUE OF TERM

CCC_ SUM=SUMMATION (KN¥*I/1)

ccc SUMPT=SUMMATION (PI)
ccc T=DUMMY

ccc TERM=P X*TERM2*¥TERM3
cccC TERM2=SUMPI¥% (M-1)

"CCC  TERM3=(1+B)*%M-1/(M%B)

ccc TOTAL=SUMMATION ( TERM)

CCC  WY=ARRAY FOR LOG(PE) FOR EACH KS AND EACH K
CCC  X=ARRAY FOR LOG(M) FOR ALL CURVES FDR EACH KS
CCC  XK=EXK(J)

CCC  XKN=KN

CCC  XKNMAX=MAX VALUE OF KN

CCC  XKNMIN=MIN VALUE OF KN

cccC XKS=KS

11



04730768 ) 80/80 LIST

ccc
CcCc

XKSN=KS+KN
XM=EM* %

ccc
cccC

XMB=XM*B
XMBMIN=TEST VALUE FOR XMB

CcCccC
CCcC
ccc

XM1=XM-1

 XX=IX=INDEX OF OUTER LOOP

Y=ARRAY FOR LOG(PE) FOR ALL CURVES FOR EACH KS
DIMENSION X(3000)sY(3000)5EX(100)sWY{100)sNPT(100)sEXK(100)

EL10=300.D0*DLOG(10.D0)
CALL INITPLT(IPLT)

READ (INs3) EMsXKSs NMsNKsIENDsIMP
L=o0_ . . L

IF (JMP «NE.O) GO TO 2

READ (INs&) (EXK(I1), I=1,NK)

—5"

FORMAT (D10e3)
LOOP FOR K
DO 70 J=1,NK
NPT (J)=0

FORMAT (2D1043,415)

XKN=EXK(J)

ccc
10

LOOP FOR M

DO 65 I=1,NM

ccc

PRINT HEADINGS FIRST TIME THROUGH THIS LOOP
IF (I.NEs1) GO TO 14

12

WRITE(NOUT,12)XKS s XKN
FORMAT (1H1+40Xs3HKS=4D942510Xs3HKN=4D%e2//)

13

WRITE (NOUT»13)

14

XM=EM* *I
XM1=XM—14D0

cCc
CcCC

TEST TO INSURE EXP(KN) DOES NOT EXCEED MACHINE CAPACITY
IF KN GT XKNMAXs INCREASE M AND CONTINUE

IF (XKNeGTeXKNMAX) GO TO 65
XKSN=XKS+XKN

ccc

TEST VALUE TO INSURE NO PREMATURE CUTOFF
ICUTOF =2 4DO*XKSN

cccC

EKSN=DEXP (=XKSN)
FORMATION OF PX FOR X=1

PX=XKSN*EKSN
SUM=1,D0

CccCcC

T=1eD0
FORMATION OF B FOR X=1

B=XKN
XMB=XM*B

ccc

TEST FOR (1+B)**M TOO LARGE
S=DLOG (1.D0O+3)

S=EL10/XM-S
IF (S+GT40.D0) GO TO 17

ccc

VALUE FOR (1+B)%*M TOO LARGE FOR MACHINE
TERM3=0.D0

cCc

GO TO 16
VALUE FOR (1+B)**M SUFFIENTLY SMALL . .

17
CcccC

TERM3= ((1+D0+B) **XM=1,D0) /XMB
TEST FOR KN NEAR ZERO

15

IF (XKNeGE«XKNMIN) GO TO 16
TERM2=1.D0

12

TERM3=1.D0

FORMAT (17Xs1HM 520X s 2HPD 520X s 2HPE » 20X s 6HLOG (M) 5 16X s THLOG ( PE) / /)



04/730/68 - e

ccce
16

CcCcc
20

ccc
ccc
ccc

ccc
ccc

TSUMPI=SUMPI+PI

25

TTEUM=SUMHT

ccc

ccc

dde

ccc
35

40
cCcC

45
ccc

ccc

CcccC
50
ccc

55

. .ELM=DLOG10(XM) _

80/80 LIST

GO TO 20

FORMATION OF PI,SUMPILTERM2 FOR X=1_
PI=DEXP (~XKN)

SUMPI=PI

TERM2=P] #%XM1

LOOP FOR SUMMATION OF TERM

TERM=P X*TERM2*¥TERM3 =
TOTAL=TERM

DO 50 IX=2sIXMAX
SAVE=TERM

XxX=1Ix ’
X1=XX-1.DO
FORMATION OF PX FOR XeGE.2
PX=PX*XKSN/XX ,

TEST FOR KN NEAR ZERO

IF (XKNeLTeXKNMIN) GO TO 45
FORMATION OF PI FOR XJGEe2 ~
PI=PI%*XKN/X1 }
FORMATION OF TERM2 FOR XeGEe2
FORMATION OF B FOR XeGEe2

TERM2= (SUMPI) %% XM1
T=T*XKN/Xx1 ~ T
A=SUM

B=XKN*¥B*A/ (XX*SUM)

TEST FOR (1+B)**M TOO LARGE

S=DLOG(1.D0+B}
S=EL10/XM=S o

IF (SelLTe04D0)} GO TO 50
FORMATION OF TERM3 ~
TEST FOR XMB LE XMBMIN
IF MB LE XMBMIN APPROX TERM3 WITH FIRST TWO TERMS OF MB ONLY
XMB=XM*B

IF (XMBoaGT<XMBMINY GO TO &0
TERM3= 1eD0O+(XM~14D0)*B/2.D0
GO TO 45

TERM3= ((1+D0+B) *%¥XM=1.D0) /XMB
FORMATION OF TERM FOR XeGEa2
TERM=P X*TERM2*TERM3

SUMMATION OF TERMS
TOTAL=TOTAL+TERM _ )
TEST IF DIFFERENCE OF TERMS FOR X=N AND X=N+1 IS SUFF. SMALL
A=DABS (TERM=SAVE)

IF (AeLToTESTeAND.IXeGT«ICUTOF) GO TO 55
TEST TO INSURE AGAINST PREMATURE CUTOFF
CONTINUE

COMPUTATION OF FINAL VALUE FOR A GIVEN M
PD=TOTAL+DEXP (= ( XKS+XM*®XKN) ) /XM
PE=14D0-PD

L=L+1

X(L)Y=SNGL(ELM)

ELM=DLOG10(PE)

Y{(L)=SNGL(ELM)

NPT(UL)=NPT(J)+1

WRITE (NOUT»60) XMsPDsPESX(L)sY (L)

13



04/30/68 80780 LIST

60
65

FORMAT(9X93(D16e936X)s2(F1l6e9+6X))
CONTINUE

70

CONTINUE
Ll=L+1

L2=L+2
X{L1)=0.

X(L2)=0.
Y(L1)=0e

CcCC

Y(L2)=0.
PLOTTING ROUTINES FOR CAL-COMP PLOTTER

CALL PLOT(Oe9-3145-3)
CALL PLOT(Oes20e9=3) . ] _ i o

CALL SCALE (XsXAXsLol)
CALL SCALE (YsYAXsLs1)

CALL AXIS (0e90e3s6HLOG(M) s—63XAX20a9X(L1)sX(L2))
CALL AXIS (0e3s0s7HLOG(PE) s7sYAX290asY(L1)sY(L2))

11=0
DO 90 I=1sNK
NN=NPT(I)

DO 85 J=1sNN

WY (D) =Y(I1])

I1=11+1
EX(J)=X(I1)

NI1=NN+1

N2=NN+2
EX(N1)=X(L1) B

EX(N2)=X{L2)
WY(N1)=Y(L1)

WY(N2)=Y(L2)
CALL LINE (EXsWYsNNs1s0s0)

90

CONTINUE
CALL SYMBOL(05316e034393HKS=90e93)

110

CALL NUMBER(145516405+35XKS9s0es=1)
CALL PLOT(20e350e9~3)

CONTINUE

IF (IEND.EQ.9) GO TO 1

120

CALL FINCIPLT)
STOP _ . -

14

END o
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where AN is in angstroms, o i5 the resolution in arc seconds, and
D is the diameter of the collector in centimeters. For diffraction-
limited optics, ¢ is related to D by

a = 2.44 x 105 arc seconds;

A
D
hence

K_=4.767 AT TO(Ax)xZ x 101

with X\ the wavelength in centimeters.

In the second form (Program 2, Figures 11-20) we consider
the sampling interval T to be a constant and examine P_ as M
becomes large, or since AT = T/M, as AT becomes smaﬁ. T he
assumption is that the signal energy can always be concentrated in
the AT interval. For this case we use the parameters Kg and
K =n,T . The noise in the AT interval is then K/M . Kg can be
calculated as before while K is calculated as

P T
n

K =7
hf

It can be shown analytically that as M — 00 , an asymptotic

value for PE is reached, where (ref. 5)

K-1+e"K - K
—_——| |e

K

lim P, = 1+KS s

E
M— oo

This asymptote is quite apparent in Figures 11-20 and is seen to vary
with K as expected. Physically, this implies that if bandwidth and
computation are expedient, one can always approach

_ -K
PE—(1+KS)e s

independent of the noise background by using narrower intervals.
This procedure also provides better range resolution for the radar
case. Implicit in these calculations is the fact that n, is a constant
or that the optical filter bandwidth is generally quite large.
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L PROGRAM 2
e 04/30/68 ' " 780/80 LIST
HURW2,C76501,T5005CM50000. NASA 101074 KARP4  HURWITZ
REQUEST TAPE7,L0O. PLOT SAO 766 RIMG IN.

— - ROE18999%s 77

- ’ " PROGRAM KARP4 (INPUTsOUTPUTsTAPET7sTAPES=INPUT» TAPE6=0UTPUT)
DIMENSION EX(100)sEXK(100)sNPT(100)sWY(100)sX(3000)sY{3000)
DOUBLE PRECISION AsBsEKSNsEL10sELMsEMsEXKsPDsPEsPIsPXs
o 1 SsSAVE » SUMs SUMPI s Ts TERMs TERM2 s TERM3 s TESTs TOTAL X1 »
2T XK s XKN s XKNMAX s XKNMIN s XKS s XKSN 9 XM 9 XM1 s XMB s XMBMIN 9 X X
DATA INsNOUTsIPLTsTEST/5+65731eD=24/
" DATA XAXsYAX/1leslbe/
DATA IXMAXsXKNMAX s XKNMIN»XMBMIN/100093eD+251eD-30514D-12/
CCC 7 KARP/HURWITZ
ccc A=ABS.VALUE OF DIFFERENCE BETWEEN TWO CONSECUTIVE TERMS
CCC™ 'B DESCRIBED IN WRITE uP
ccc EKSN=EXP (-XKSN)
~ccc ELIO=CONSTANT USED FOR TESTING MAGNITUDES OF NUMBERICAL VALUES
ccc ELM=L0OG (M)

€CC = EM=INITIAL VALUE OF M
ccc EXK=INPUT OF K
dd EX=ARRAY FOR LOG(M) FOR EACH KS AND EACH K
ccc I=INDEX
dd« Il COUNTS NUMBER TOTAL NUMBERS OF PE'S
ccc ICUTOF USED TO INSURE NO PREMATURE CUT-OFF OF THE CALCULATION

T CcCc ‘TEND=TEST VALUE FOR STOPPING RUN

.- .CCc IEND MUST BE. NINE FOR ALL BUT LAST DATA CARD
CCC IXMAXx=MAX VALUE FOR INDEX IX
dde J=INDEX

T T T CCCT JMP=TEST VALUE FOR READING VALUES OF K

dde JMP MUST BE ZERO FOR FIRST DATA CARD

“Tcec NK=NUMBER OF VALUES OF K

ccce NM=NUMBER OF VALUES OF M
TCCC O NN=NPTI(I)
ccc NPT(J) COUNTS NUMBER OF M'S FOR EACH K
"CCC T N1=NN+1 ) ) ’ ’ o
ccc N2=NN+2
T T CCC¢ T PD DESCRIBED IN WRITE WP’
ccc PE=1-PD
ccc Pl=(KN#*])%EKSN/ (I FACTORIAL)
ccc PX=XKSN*EKSN
cce S USED TO TEST MAGNITUDES
e SAVE LAST VALUE OF TERM
CCCE™ SUM=SUMMATION (KN#%*I/1)
ccc SUMPI=SUMMATION (PI)
ccc T=DUMMY
dde TERM=P X* TERM2*TERM3
ccc TERM2=SUMPI#*%(M~1)
CCC  TERM3=(1+B)**¥M—1/(M%B)__ _ ) ) L o
ccc TOTAL=SUMMATION{TERM)

__ Cccc WY=ARRAY FOR LOG(PE) FOR EACH KS AND EACH K
dde X=ARRAY FOR LOG{(M) FOR ALL CURVES FOR EACH K$
ccc XK=EXK (J) _ )
ccc XKN=KN
ccc XKNMAX =MAX VALUE OF KN

"CcC’ TXKNMIN=MIN VALUE OF KN
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04/30/68 - 80/80 LIST

CCC  XKS=KS

CCC  XKSN=KS+KN
CCC  XM=EM**I
CCC  XMB=XM*B

R ddd XMBMIN=TEST VALUE FOR XMB

ccCc XMi=XM-1
CcCcC XX=IX=INDEX OF 'OUTER LOOP =~

ccc Y=ARRAY FOR LOG(PE) FOR ALL CURVES FOR EACH KS

EL10=300.D0*DLOG(10.D0)
CALL INITPLT(IPLT)

1" READ {IN,3Y EMsXKSs NMsNKsIENDsJIMP

L=0
IFT (JMP oNE.0O) GO 10 2
READ (1Ns4) (EXK(I)s I=14NK)
4 FORMAT (D10e3)
ccc LOOP FOR K
27 D076 J=THeNK ~
NPT (J) =0
© 3 FORMAT (2D10.3,4T15) =~ 7~
XK=EXK (J)
CCC LOOP FOR 'M
10 DO 65 1I=1sNM

CCt PRINT HEADINGS FIRST TIME THROUGH THIS LOOP

IF (I.NE.l) GO TO 14
TTWRITE (NOUT»12) XKS,XK

12 FORMAT(lHl940X’3HK5é9D9.2,1OX92HEé,D9-2//)

WRITE (NOUT,»13)

13 FORMAT(17X9}HM920X92HPD920X92HPE,20X,6HLOG(M)9L6X9?HLOG(PE)//)_

14 XMEEM**]
XM1=XM-1.D0O
T 7 XKN=XK7XM

cCc TEST TO INSURE EXP(KN) DOES NOT EXCEED MACHINE CAPACITY

ccc IF KN GT XKNMAXs INCREASE M AND CONTINUE

~ IF (XKNeGT«XKNMAX) GO TO 65
XKSN=XK S+XKN

ccc TEST VALUE TO INSURE NO PREMATURE CUTOFF

"ICUTOF =2 4DO*XKSN
- EKSN=DEXP(-XKSN)
ccc FORMATION OF "PX FOR X=1
PX=XKSN*EKSN
SUM=1.D0
T=1.D0
CCC ~ FORMATION OF B FOR X=1
B=XKN
XMB=XM*B
ddd TEST FOR (1+B)#*%M TOO LARGE
$=DLOG(1.D0+B) ’
S=EL10/XM-S
IF (SeGT40.D0) GO TO 17

CCC  VALUE FOR (1+B)**M TOO LARGE FOR MACHINE

TERM3=0.D0
GO 70 16

CCC™ “VALUE FOR (1+B)*%¥M SUFFIENTLY SMALL

17 TERM3=((1.DO+B)**XM-1.D0)/XMB
ccCc TEST FOR KN NEAR ZERO T -
15 IF (XKNeGE«XKNMIN) GO TO 16

TERM2=1.D0
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TERM3=1.D0
GO TO 20

FORMATION OF PIsSUMPI,TERM2 FOR X=1
PI=DEXP (=XKN)
SUMPI=PI N
TERM2=PI *%¥XM1

""LOOP FOR SUMMATION OF TERM

TERM=P X*TERM2*¥TERM3

ccc

TOTAL=TERM —

DO 50 IX=2,IXMAX
TSAVESTERM ™~

XX=1X

"X1=XX-1eDO

FORMATION OF PX FOR XeGEs.2

Lec

Lt

ccCc

- .

TTPX=PX*®*XKSN/XX

TEST FOR KN NEAR ZERO

TTIFT (XKNe LTeXKNMIN) GO TO 45

FORMATION OF PI FOR X.GE.Z2
PI=PI*XKN/XT ’ b T
FORMATION OF TERM2 FOR XeGEe2
“FORMATION OF B FOR XsGEe.2 ~ °~
SUMPI=SUMPI+PI1

TT25 TERM2= (SUMPI) %% XM1

T=T*XKN/X1
"A=suM T T T T
SUM=SUM+T

55

B=XKN*BxA/ (XX¥SUM) ~ — ~
TEST FOR (1+B)*%M TOO LARGE
“5=DLOGTL.D0+BY — )
S=EL10/XM=-S

IF TSeLTe0.D0OT GO TO 50
FORMATION OF TERM3

" TEST FOR XmMB LE XMBMIN

IF MB LE XMBMIN APPROX TERM3 WITH FIRST TWO TERMS OF MB ONLY

“XMB=XM*B

IF {XMBeGTeXMBMIN) GO TO 40
TERM3= 77 1. D0+ TXM-1.D0)*%B/2.00
GO TO 45

40
ccc
- 45
ccc

TERM3=1((1.00+B)*%xxM=1.D0)/xMB
FORMATION OF TERM FOR XeGEs2
TERM=P X*TERM2*TERM3 -
SUMMATION OF TERMS
TOTAL=TOTAL+TERM

TEST IF DIFFERENCE OF TERMS FOR X=N AND X=N+1 IS SUFFe SMALL

~A=DABS (TERM-SAVE)

50

55

IF (AsLTeTESTeANDeIXeGT«ICUTOF) GO TO 55
"TEST TO TNSURE AGAINST PREMATURE CUTOFF
CONTINUE

COMPUTATION OF FINAL VALUE FOR A GIVEN M
 PD=TOTAL+DEXP (~( XKS+XM*XKN) ) /XM

PE=1.D0-PD
L=L+1

ELM=DLOGI0 (XM}
X(L)=SNGL (ELM)
"ELM=DLOGI1O(PE)
Y(L)=SNGL(ELM)

NPT (JY=NPT(J)+1
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60
65
70

ccc

85

120

T
WRITE (NOUT»60) XMsPDsPEsX (L)Y (L)
FORMAT (9X»3(D16.9s6X¥s2(F16+956X))
CONTINUE oo

CONTINUE

Ll1=L+1 - T
L2=L+2

X{L1)=0e ) R
X(L2)=0.

Y(L1)=0.

Y{(L2)=0.

PLOTTI'NG ROUTINES FOR CAL=COMP PLOTTER s
CALL PLOT(Qes—31ss—3)

CALL PLOGT(OQes2e5~=3)

CALL SCALE (XsXAXsLs1)

CALL SCALE (YsYAXsLo1V "

CALL AXIS (04s0es6HLOG(M) 5=6sXAX30esX(L1)sX(L2))
CALL AXIS (0es0sTHLOG(PE) s7sYAX290esY(L1)sY(L2)) B
11=0

DO 906 "~ I=1,NK "~ T T ' ’ : i I
NN=NPT (1)

DO 85 J=1,sNN }

I1=11+1

EX(Jy=X(11) ) S o : I
WY (J)=Y(I1)

" NI=NN+T o B o T

N2=NN+2
EX(N1)=X(L1)
EX(N2)=X(L2)
WY (N1)Y=YT(LL)
WY (N2)=Y(L2)
CALL LINE{EXsWYsNN31,0507" s ‘ B
CONTINUE

CALL SYMBOL(0e5916e035e333HKS=900e93) o T
CALL NUMBER(145516e05433XKSs0es~1)
CALL PLOT(20450e3-3)

CONTINUE

IF(IEND+EQ.9) GO TO 1

CALL FINCIPLT)

STOP
END
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COMPUTATIONS

The evaluation of P and P.. as functions of the parameters
Kg » Kp, and M, was accomplishec?by a set of computer programs
which are presented below.

In one case, Kg, K,, and M are input to the program. In the
second case K, is computed as Kp = K/M where Kg, Kand M are
input to the program.

The programs were written in Fortran IV and run on the
CDC 6400 Computer System at the Smithsonian Astrophysical
Observatory in Cambridge, Massachusetts.
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DESCRIPTION OF THE FLOW CHART

The constants including tape definitions are set in data
statements (Figures 21la,b, and c):

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

1:

10:

11:

12:
13:
14:
15:
16:

17:

Input data and switch values. Set index J to 1.
This index counts the number of Kn values.

Set index I to 1 . This index counts the number of
M values. Print headings for tables to be outputted.

Set the M wvalue for this loop. In one version of the
program Kn is fixed. In the other version it is
computed as a function of M.

Test magnitude of K_ to prevent overflow or error.

Establish initial values of computed parameters.

Test magnitude of(1+B)M to prevent overflow or
error.

Compute value of term 3.

Test for Kn near zero.

Compute initial values for PI, Sum PI, Term 2.
Compute initial values for term, total.

Set index IX to 2. This counts number of times
through major computation loop.

Compute PX.
Test for Kn near zero.
Compute PI, Sum PI, Term 2.
Compute new B.

. M
Test magnitude of (1 + B) .

Compute Term 3.
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Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

18:

19:

20:
21:
22:
23:
24:
25:
26:

27

28:

29:

Compute new term and add this total.

Test for completion of major loop. If the difference
between two successive values of term is sufficiently
small, and the index has exceeded a predetermined
cutoff value, the loop is completed.

Increment IX by 1.

Test for sufficient number of times through the loop.
PD is set to final value of total. PE is I—PD .

Print out table of M, PD, PE and their logarithms.
Increment index I by 1.

Test for maximum value of M.

Increment index J by 1.

If J has not exceeded J max, recycle for next
value of K (or Kn) .

Plot results.

Test whether any more data sets are to be computed.



INITIALIZE
INPUT
[—>J

I

|—»1

| PRINT HEADINGS

| 3
EMI—bM

?9 7

K/M —» KN

° YES

NO 5
KS+ KN —» KSN

(ksNye” ¥SN__, px
| —» SUM
KN —B

O——» TERM 3 (1+8)M < 0300

(1+8M-1)/ mB

9 — TERM 3
e~KN — p1 8
PI —» SUMP 1 NO
p1 M _rErMm 2
YES
T -
PX){TERM
(PXNTERM 2XTERM 3] . TERm 2
—» TERM <
TERM — TOTAL |—> TERM 3

Figure 2la.- Program flow chart
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(PI)(KN)/(XK-1) »PTI

SUMPT +PT —» SUMPT
(SUMPT)MI—»TERM2

y_ 5

(THKNY/(IX-1) —>T
SUM+T —» SUM
(KN)(B) (SUM-TY((IX)(SUM))

__58

@M A (8))
——> TERM 3

v B
‘ (Pxxlzfa:_ 'é)é;sma’

TOTAL + TERM-TOTAL

N YES

NOsq

IX+l —IX4

21
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Figure 21b.- Program flow
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(totaL |
+EXP-(KSH+MIKN))/
( : >——J *M
—» PD

| —PD—>PE |

I

PRINT:
M PD,PE

=
@————D I+1—1

25
(D
YES
26

J+i—»J
27
° YES
NO 28
PLOT:

LOG(PE) vs LOG(M)

29

ANY MORE
DATA SETS
?

Figure 21c.- Program flow

chart
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